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Appendix I 
  
NONRADIATION CONDITION 
  
 
 
 
 
DERIVATION OF THE CONDITION FOR NONRADIATION 
The condition for radiation by a moving point charge given by Haus [1] is that its spacetime Fourier transform does possess 
components that are synchronous with waves traveling at the speed of light.  Conversely, it is proposed that the condition for 
nonradiation by an ensemble of moving charge that comprises a charge-density function is that its spacetime Fourier transform 
does NOT possess components that are synchronous with waves traveling at the speed of light.  The Haus derivation applies to a 
moving charge-density function as well because charge obeys superposition.  The Haus derivation is summarized below. 
 
The Fourier components of the current produced by the moving charge are derived.  The electric field is found from the vector 
equation in Fourier space (k, -space).  The inverse Fourier transform is carried over the magnitude of k .  The resulting 

expression demonstrates that the radiation field is proportional to ( , )
c

J n  where ( , )J k  is the spacetime Fourier transform 

of the current perpendicular to k  and 
| |k
kn .  Specifically, 

 0

0

, ,     ,
2 2

i
cd c d d X X e

c
n r

E r n n J n  (1) 

The field ,
2
dE r  is proportional to ,

c
J n , namely, the Fourier component for which 

c
k .  Factors of  that 

multiply the Fourier component of the current are due to the density of modes per unit volume and unit solid angle.  An 
unaccelerated charge does not radiate in free space, not because it experiences no acceleration, but because it has no Fourier 

component ,
c

J n . 

 
SPACETIME FOURIER TRANSFORM OF THE ELECTRON FUNCTION 
The electron charge-density (mass-density) function is the product of a radial delta function 2

1( ( ) ( ))nf r r r
r

, two angular 

functions (spherical harmonic functions), and a time-harmonic function.  The spacetime Fourier transform of the spherical 
current membrane in three dimensions in spherical coordinates plus time is given [2, 3] as follows: 

 
2

2

0 0 0 0

( , , ) ( , , , )exp( 2 [cos cos sin sin cos( )])exp( ) sinM s r t i sr i t r d d drdt  (2) 

With circular symmetry [2] 

 2
0

0 0 0

( , ) 2 ( , , ) 2 sin sin exp 2 cos cos sin expM s r t J sr i sr r i t d drdt  (3) 

With spherical symmetry [2], 

 2

0 0

( , ) 4 ( , )sinc(2 ) exp( )M s r t sr r i t drdt  (4) 



Appendix I 1686

The functions that model the electron charge density are separable. 
 ( , , , ) ( ) ( ) ( ) ( )r t f r g h k t   (5) 
The orbitsphere function is separable into a product of functions of independent variables, , , ,r  and t .  The radial function, 
that satisfies the boundary condition is a delta function.  The time functions are of the form i te , the angular functions are 
spherical harmonics, sine or cosine trigonometric functions or sums of these functions, each raised to various powers.  The 
spacetime Fourier transform is derived of the separable variables for the angular space function of sin  and sin .  It follows 
from the spacetime Fourier transform given below that other possible spherical harmonic angular functions give the same form 

of result as the transform of sin  and sin .  Using Eq. (4), ( )F s , the space Fourier transform of 2

1( ) ( )nf r r r
r

 is given as 

follows: 

 2
2

0

1( ) 4 ( )sinc(2 )nF s r r sr r dr
r

 (6) 

 ( ) 4 sinc(2 )nF s sr  (7) 
 

The subscript n is used hereafter; however, the quantization condition appears in the Excited States of the 
One-Electron Atom (Quantization) section.  Quantization arises as “allowed” Maxwellian solutions 
corresponding to a resonance between the electron and a photon. 

 
Using Eq. (3), 1

1 ( , )G s , the space Fourier transform of ( ) sing  is given as follows where there is no dependence on : 

 1 2
1 0

0 0

( , ) 2 sin 2 sin sin exp 2 cos cos sinG s J sr i sr r d dr  (8) 

 1 2 2
1 0

0 0

( , ) 2 sin 2 sin sin cos 2 cos cosG s r J sr sr d dr  (9) 

From Luke [4] and Abramowitz and Stegun [5]: 
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Let  
 2 sin sinz sr  (11) 
With the substitution of Eqs. (11) and (10) into Eq. (9),  
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From Luke [6], with Re( ) > 1
2

: 

 2

0

1
2 cos cos sin

1 1
2 2

z
J z z d  (15) 

Let  
 2 cosz sr  and n  (16) 
Applying the relationship, the integral of a sum is equal to the sum of the integrals to Eq. (14), and transforming Eq. (14) into the 
form of Eq. (15) by multiplication by:  

 

1 1 cos
2 21

1 1cos
2 2

sr

sr
 (17) 
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and by moving the constant outside of the integral gives: 

 
2( 1)1

1 2 2
1

10 0

1 1 cos( 1) sin 2 2( , ) 2  sin cos(2 cos cos )
1 1( 1)!( 1)! cos
2 2

srsr
G s r sr d dr

sr
 (18) 
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10 0

1 1 cos( 1) sin 2 2, 2  sin cos(2 cos cos )
1 1( 1)!( 1)! cos
2 2

srsr
G s r sr d dr
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 (19) 

Applying Eq. (15), 
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( 1)!( 1)! cos
sr

G s r J sr dr
sr

 (20) 

Collecting the r  raised to a power terms, Eq. (20) becomes, 
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( 1)!( 1)! cos
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G s r J sr dr
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 (21) 

Let ' ';   
2 cos 2 cos

r drr dr , 
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( 1) sin 2 2( , ) 2 ' ( ') '

( 1)!( 1)! cos 2 cos
s

G s r J sr dr
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 (22) 

Consider the Hankel transform formula from Bateman [7]: 

 
1 1 1
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1
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1 1

( )
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12
2
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s J s s s J sH H

 (23) 

where the radius is normalized to the dimensionless parameter r  that satisfies the conditions, 

 

1
2 ,  0 1

0,  1
1Re
2

r r
r  (24) 

By applying Eq. (23), Eq. (22) becomes, 
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By collecting power terms of s  gives 

 
2( 1) 11

1 1 22
1 1 12

1

1 1
( 1) sin 12 2( , ) 2 2

( 1)!( 1)! 2cos 2
G s s J s s s J sH H  (26) 

Next, 1
1 ( , )H s , the space Fourier transform of h( ) sin , is considered wherein the radius is normalized to the 

dimensionless parameter r  as given in Eq. (24).  Using Eq. (2) 1
1 ( , )H s  is 

 
2 1

1 2
1

0 0 0

( , ) sin exp( 2 [cos cos sin sin cos( )]) sinH s i sr r drd d  (27) 

By setting  
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 (s, , , , ) 2 s[cos cos sin sin cos( )]  (28) 
Eq. (28) simplifies to: 

 
2 1

1 2
1

0 0 0

( , , ) sin sin i rH s e r drd d  (29) 

Following the radial integration [8], 1
1 ( , )H s  is: 

 
2

1
1 2 3 3 2 3

0 0

2cos sin 2sin cos 2cos 2sin 2( , , ) sin sinH s i d d  (30) 

Based on the spatial similarity of   h( ) sin  and g( ) sin , the respective Fourier transforms are similar and considered 
nonzero since the inverse Fourier transforms are the original trigonometric functions. 

The time Fourier transform of ( ) Re{exp( )}nq t i t  is given as follows [3]: 

 
0

1 1( ) cos exp( ) [ ( ) ( )]
2 2n n nQ t i t dt  (31) 

where n  is the angular frequency given by Eq. (1.36) corresponding to the frequency of a potentially emitted photon as given in 
Chp. 2. 

A very important theorem of Fourier analysis states that the Fourier transform of a product is the convolution of the 
individual Fourier transforms [9].  By applying this theorem, the spacetime Fourier transform of an orbitsphere, ( , , )mM s  
is of the following form: 
 ( , , ) ( ) ( , ) ( , , ) ( )m m mM s F s G s H s Q  (32) 
Therefore, the spacetime Fourier transform, 1

1 ( , , )M s , is the convolution of Eqs. (7), (26), and (30-31). 

 

1 1
1 1

2( 1)1
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 (33) 

The spherical harmonics functions are: 
 ,, cosm m im

mY N P e  (34) 
Generalizing the exemplary functions sin  and sin , the Fourier transforms of the spherical harmonics expressed in terms of 
the respective integrals are given by: 

 2
, 0

0 0

( , ) 2 cos 2 sin sin exp 2 cos cos sinm m
mG s N P J sr i sr r d dr  (35) 

and  

 
2

2

0 0 0

( , , ) exp( 2 [cos cos sin sin cos( )]) sinm imH s e i sr r d d dr  (36) 

In the general case, the spacetime Fourier transform, ( , , )mM s , is the convolution of Eqs. (7), (31), and (35-36). 

 1( , , ) 4 sinc(2 ) ( , ) ( , , ) [ ( ) ( )]
4

m m m
n n nM s sr G s H s  (37) 

wherein ( , )mG s  and ( , , )mH s  are the spherical-coordinate Fourier transforms of , cosm
mN P  and ime , respectively.  

The condition for nonradiation of a moving charge-density function is that the spacetime Fourier transform of the current-density 

function must not have waves synchronous with waves traveling at the speed of light, that is synchronous with n

c
 or 

synchronous with 
0

n

c
 where  is the dielectric constant of the medium.  The Fourier transform of the charge-density 

function of the orbitsphere (membrane bubble of radius r ) is given by Eq. (37).  In the case of time-harmonic motion, the 
current-density function is given by the time derivative of the charge-density function.  Thus, the current-density function is 
given by the product of the constant angular velocity and the charge-density function.  The Fourier transform of the current-
density function of the orbitsphere is given by the product of the constant angular velocity and Eq. (37).  Consider the radial and 



Nonradiation Condition 1689

time parts of ( , , )mK s , the Fourier transform of the current-density function, where the angular transforms 
( , ) ( , , )m mG s H s  are taken as not zero: 

 1sin(2 )( , , ) 4 ( , ) ( , , ) [ ( ) ( )]
2 4

m m mn
n n n

n

srK s G s H s
sr

 (38) 

For the case that the current-density function is constant corresponding to 0
0 ,Y , the proceeding factor n  of the RHS of Eq. 

(38) is zero.  For time harmonic motion, with angular velocity, , Eq. (38) is nonzero only for n ; thus, s  
becomes finite only for the corresponding wavenumber, ns .  The relationship between the radius and the wavelength is: 
 n n nv f  (39) 
 2n n n n nv r f f  (40) 
 2 n nr  (41) 
Radiation of the bound electron requires an excited state wherein a potentially emitted photon circulates along the orbitsphere at 
light speed.  The nature of an excited state as shown in the Excited States of the One-Electron Atom (Quantization) section is a 
superposition of an electron and a photon comprising two-dimensional shells of current and field lines, respectively, at the same 
radius as defined by nr r 1.  Due to the further nature of the photon possessing light-speed angular motion, the electron 
motion and corresponding spatial and temporal parameters may be considered relative to light-speed for the laboratory frame of 
the electron’s constant angular velocity.  A radial correction exists due to Special Relativistic effects.  Consider the wave vector 
of the sinc function.  When the velocity is c  corresponding to a potentially emitted photon, 
 n n n ns v s c  (42) 
the relativistically corrected wavelength given by Eq. (1.279) is2: 
 n nr  (43) 
The charge-density functions in spherical coordinates plus time are given by Eqs. (1.27-1.29).  In the case of Eq. (1.27), the 
wavelength of Eq. (42) is independent of ; whereas, in the case of Eqs. (1.28-1.29), the wavelength in Eq. (42) is a function of 
sin .  Thus, in the latter case, Eq. (43) holds wherein the relationship of wavelength and the radius as a function of  are given 
by sin sinn nr . 

Substitution of Eq. (43) into the sinc function (Eq. (38)) results in the vanishing of the entire Fourier transform of the 

current-density function.  Thus, spacetime harmonics of n k
c

 or 
0

n k
c

 do not exist for which the Fourier transform of 

the current-density function is nonzero.  Radiation due to charge motion does not occur in any medium when this boundary 
condition is met.  Note that the boundary condition for the solution of the radial function of the hydrogen atom with the 
Schrödinger equation is 0  as r .  Here, however, the boundary condition is derived from Maxwell’s equations: For 
non-radiative states, the current-density function must not possess spacetime Fourier components that are synchronous with 
waves traveling at the speed of light.  An alternative derivation to that of Haus [1] considering the macro-Maxwellian case and 
boundary conditions that provides acceleration without radiation is given by Abbott [10]. 
 
NONRADIATION BASED ON THE ELECTROMAGNETIC FIELDS AND THE 
POYNTING POWER VECTOR 
A point charge undergoing periodic motion accelerates and as a consequence radiates power P  according to the Larmor 
formula: 

 
2

2
3

0

1 2
4 3

eP a
c

 (44) 

where e  is the charge, a  is its acceleration, 0  is the permittivity of free space, and c  is the speed of light.  Although an 
accelerated point particle radiates, an extended distribution modeled as a superposition of accelerating charges does not have to 
radiate [1, 10-13].  An ensemble of charges, all oscillating at the same frequency, create a radiation pattern with a number of 
                                                 
1 Note that the equations of exited state photons given by Eq. (2.15) are not the macro-Maxwellian spherical resonator cavity solutions.  The latter is the 
superposition of many photons comprising a three-dimensional electromagnetic wave in the cavity with the associated macro-boundary conditions.  Haus 
[1] does not address the quantization of single-photon radiation of a bound state that conserves the angular momentum of the photon and single bound 
electron based on their respective natures.  However, the superposition of many photons obeying the quantization condition on a single electron converges 
to the macro-Maxwellian result.  Haus considers an example of rectilinear oscillation of a free point charge that would radiate many photons of many 
frequencies.  It is the macro-Maxwellian case and boundary conditions that Haus addresses in his paper [1] on radiation from point charges.  Since 
Maxwell’s equations are obeyed on all scales, the converse of the condition for radiation gives rise to the condition of nonradiation of the bound electron. 
2 In the frame synchronous with waves traveling at the speed of light, the lab-frame electron motion is on a sphere with a radius contracted by the factor 
2 .  The derivation is given in the Special Relativistic Effect on the Electron Radius and the Relativistic Ionization Energies section.  With the 
wavelength in the speed of light frame given by Eq. (43), the relativistic invariance of the angular momentum of the electron of  (Eq. (1.37)) provides 
that the corresponding relativistic electron mass (integral of the mass density over the surface) is 2 em . 
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nodes.  The same applies to current patterns in phased array antenna design [14].  It is possible to have an infinite number of 
charges oscillating in such as way as to cause destructive interference or nodes in all directions.  The electromagnetic far field is 
determined from the current distribution in order to obtain the condition, if it exists, that the electron current distribution given 
by Eq. (49) must satisfy such that the electron does not radiate.   

The charge-density functions of the electron orbitsphere in spherical coordinates plus time are given by Eqs. (1.27-1.29).  

For  = 0, 28 n

eN
r

, and the charge-density function is: 

  
  = 0  

 0
02( , , , ) [ ( )] , ,

8
m

n
n

er t r r Y Y
r

 (45) 

The equipotential, uniform or constant charge-density function (Eq. (1.27) and Eq. (49)) further comprises a current pattern 
given in the Orbitsphere Equation of Motion for  = 0 Based on the Current Vector Field (CVF) section.  It also corresponds to 
the nonradiative 1n ,  = 0 state of atomic hydrogen and to the spin function of the electron.  The current-density function is 
given by multiplying Eq. (47) by the modulation frequency corresponding to the constant angular velocity n .  There is 
acceleration without radiation, in this case, centripetal acceleration.  A static charge distribution exists even though each point on 
the surface is accelerating along a great circle.  Haus’ condition predicts no radiation for the entire ensemble.  The same result is 
trivially predicted from consideration of the fields and the radiated power.  Since the current is not time dependent, the fields are 
given by:  
 H J  (46) 
and 
 0E  (47) 
which are the electrostatic and magnetostatic cases, respectively, with no radiation.  

In cases of orbitals of heavier elements and excited states of one electron-atoms and atoms or ions of heavier elements 
that are not constant as given by Eqs. (1.28-1.29), the constant spin function is modulated by a time and spherical harmonic 
function.  The modulation or traveling charge-density wave corresponds to an orbital angular momentum in addition to a spin 
angular momentum.  These states are typically referred to as p, d, f, etc. orbitals and correspond to an  quantum number not 
equal to zero.  Haus’ condition also predicts nonradiation for a constant spin function modulated by a time and spherically 
harmonic orbital function.  However, in the case that such a state arises as an excited state by photon absorption, it is radiative 
due to a radial dipole term in its current-density function since it possesses spacetime Fourier transform components 
synchronous with waves traveling at the speed of light as given in the Instability of Excited States section. 

The nonradiation condition given by Eqs. (38) and (42-43) may be confirmed by determining the fields and the current 
distribution condition that is nonradiative based on Maxwell’s equations.   

For   0, 24 n

eN
r

.  The charge-density functions including the time-function factor are: 

   0 

 0
02( , , , ) [ ( )] , Re ,

4
nim tm

n
er t r r Y Y e
r

 (48) 

where Re , cos cosnim tm m
nY e P m m t .  In the cases that 0m , Eqs. (1.28-1.29) and Eq. (48) is a spherical 

harmonic traveling charge-density wave of quantum number m  that moves on the surface of the orbitsphere about the z-axis at 
angular frequency n  and modulates the orbitsphere corresponding to 0  at nm .  Since the charge is modulated time 
harmonically about the z-axis with the frequency nm  and the current-density function is given by the time derivative of the 
charge-density function, the current-density function is given by the normalized product of the constant modulation angular 
velocity and the charge-density function.  The first current term of Eq. (48) is static.  Thus, it is trivially nonradiative.  The 
current due to the time dependent term is 
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 (49) 

where N  and 'N  are normalization constants.  The vectors are defined as: 

 ˆ ˆ ˆ ˆˆ ˆ ˆ;  
ˆ ˆ sin
u r u r u z orbital axis
u r

 (50) 

 ˆ ˆ r̂  (51) 

 “^” denotes the unit vectors û u
u

, non-unit vectors are designed in bold, and the current function is normalized.  For time-

varying electromagnetic fields, Jackson [15] gives a generalized expansion in vector spherical waves that are convenient for 
electromagnetic boundary-value problems possessing spherical symmetry properties and for analyzing multipole radiation from 
a localized source distribution.  The Green function ,G x' x  which is appropriate to the equation:  

 2 2 ,k G x' x x' x  (52) 

in the infinite domain with the spherical wave expansion for the outgoing wave Green function is: 

 1 *
, ,

0
, ', ' ,

4

ik

m m
m

eG ik j kr h kr Y Y
x x'

x' x
x x'

 (53) 

General spherical coordinates are shown in Figure AI.1.   
 
Figure AI.1.   Far field approximation. 
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Jackson [15] further gives the general multipole field solution to Maxwell’s equations in a source-free region of empty 
space with the assumption of a time dependence i te . 

 
, ,

,

, ,
,

, ,

, ,

E m M m
m

E m M m
m

ia m f kr a m g kr
k

i a m f kr a m g kr
k

B X X

E X X
 (54) 

where the cgs units used by Jackson are retained in this section.  The radial functions f kr  and g kr  are of the form: 

 1 1 2 2g kr A h A h  (55) 

,mX  is the vector spherical harmonic defined by: 

 , ,
1, ,

1
m mYX L  (56) 

where 

 1
i

L r  (57) 

The coefficients ,Ea m  and ,Ma m  of Eq. (54) specify the amounts of electric , m  multipole and magnetic , m  
multipole fields, and are determined by sources and boundary conditions as are the relative proportions in Eq. (55).  Jackson 
gives the result of the electric and magnetic coefficients from the sources as: 
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* 34, ,
1

m
E

k ika m Y rj kr j kr ik r j kr d x
r ci

r J M  (58) 

and 

 
2

* 34, ,
1

m
M

ka m j kr Y d x
c
JL M  (59) 

respectively, where the distribution of charge , tx , current , tJ x , and intrinsic magnetization , txM  are harmonically 
varying sources: tex , teJ x , and texM .  From Eq. (49), the charge and intrinsic magnetization terms are zero.  

Also, the current , tJ x  is in the ˆ  direction; thus, the ,Ea m  coefficient given by Eq. (58) is zero since 0r J .  
Substitution of Eq. (49) into Eq. (59) gives the magnetic multipole coefficient ,Ma m : 

 
22
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ˆ( ) , sin
2 44, ,

1

mn
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m n
M

m e N r r Y
rka m j kr Y d x

c
L  (60) 

wherein the separable time harmonic function of the current is considered separately in Eq. (81).  Each mass-density element of 
the electron moves about the z-axis along a circular orbit of radius sinnr  in such a way that , changes at a constant rate.  That 
is t  at time t  where nm  is the constant angular modulation frequency given in Eq. (49), and 
 ( ) sin cos sin sinn nr t r t r ti j  (61) 
is the parametric equation of the circular orbit.  The relationships between the Cartesian ( ijk ) and spherical ( re e e ) coordinates 
are [16]: 

 
sin cos sin sin cos
cos cos cos sin sin

sin cos

re i j k
e i j k
e i j

 (62) 

The selection rules (Eq. (2.86)) for the conservation of angular momentum must be satisfied during the emission of a single 
photon of angular momentum : 

 1 (63) 
The photon’s angular momentum given by Eq. (4.1) is: 

 41 Re ( )
8

dx
c

m r E B*  (64) 

requiring a matching change in the electron’s angular momentum.  With emission, the radius must decrease in order to conserve 
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the photon’s energy 

 E  (65) 

and the electron’s energy in the inverse-radius Coulomb potential: 

 
2

04
ZeV

r
 (66) 

The radial electric dipole current for a potentially emitted photon for the selection-rule condition of Eq. (2.86) given by Eq. 
(2.90) is 

 cos sinrJ Jr J k e e
r

 (67) 

Then, for radiation to occur from the rotating spherical harmonic current (Eq. (49)) while obeying the selection rules and the 
requirement of an allowed azimuthal-only B  (Eq. (2.102)) pertaining to the emission of a single photon, the radiated magnetic 
field must have e  only dependence.  Further given Jackson’s Eq. (16.84-16.89) [15] for the relationship of ,Ma m  to B , the 
components of L  in Eq. (60) are restricted to those in the xy-plane, the xL  and yL  components.  It can easily be appreciated that 
this result also arises from application of L J  to Eq. (67) with the use of the vector identity given by Eq. (16.90) of Jackson 
[15]: 
 iL J r J  (68) 
Then, the nonradiation condition tests whether the components of the rotating spherical harmonic current that are parallel to 
those of Eq. (67) give rise to radiation. 

Jackson gives the operator in the xy-plane corresponding to the current motion in this plane and the relations for 
,mY  [15]: 

 coti
x yL L iL e i  (69) 

 1, 1 ,m mL Y m m Y  (70) 

Using Eq. (69), L J  of Eq. (59) is 
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 (71) 

Using Eq. (70) in Eq. (71) gives: 

 1, sin , cos sin 1 ,m i m mL Y e Y m m Y  (72) 

The spherical harmonic is given as 
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 (73) 

Thus, Eq. (72) is given as: 

 11
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Substitution of Eq. (74) into Eq. (60) gives: 
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 (75) 

Substitution of *, 1 ,mm mY Y  and Eq. (73) into Eq. (75) and integration with respect to dr  gives: 
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The integral in Eq. (76) separated in terms of d  and d  is: 
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Consider that the d  integral is finite and designated by , then Eq. (77) is given as: 
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From Eq. (54), the far fields are given by: 
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where ,Ma m  is given by Eq. (78). 
The power density P t  given by the Poynting power vector is: 

 P t E H  (80) 

For a pure multipole of order , m , the time-averaged power radiated per solid angle 
,dP m

d
 given by Eqs. (16.74) and 

(16.75) of Jackson [15] is: 
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where ,Ma m  is given by Eq. (78). 
The modulation function , ,mY  is a traveling charge-density wave that moves time harmonically on the surface of 

the orbitsphere, spins about the z-axis with frequency n , and modulates at nm  corresponding to the term nm t  in Eq. (49).  
The independent variable  is also a term of the argument of the spherical harmonic function as shown in Eq. (49).  Consider the 
entire potentially radiating surface and the single quantized potentially emitted photon that carries all of the conserved angular 
momentum of  and energy given by Planck’s equation.  The time dependence of the power is eliminated in Eq. (81), but the 
boundary condition of the azimuthal spatial integral for ,Ma m over its  dependence can also be evaluated in Eqs. (78) and 
(81) according to the source current’s space and time dependence using a substitution of variable for .  From the azimuthal 
dependency of the source current corresponding to one period, Eq. (78) that can be written as: 
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where s  is the distance along a current path with the corresponding limit of integration being the angular displacement of the 
rotating modulation function during one period nT  at the linear velocity in the ˆ  direction of v , and k  is the wavenumber 

corresponding to the angular frequency.  Thus, 
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In the case that k  is the light-like 0k , then /nk c , and the sin ks  term in Eq. (84) vanishes for, 
 nR cT  (85) 
 1

nRT c  (86) 
 Rf c  (87) 
Here n  refers to Eq. (48) regarding the angular frequency given by Eq. (1.36) corresponding to the frequency of a potentially 
emitted photon as given in Chp. 2.  Thus, 
 n n ns vT R r  (88) 
as given by Eq. (1.279) which is identical to the Haus condition for nonradiation given by Eq. (43), and the photon emission 
condition given by Eq. (88) is equivalent to that of Eq. (67).  Then, the multipole coefficient ,Ma m  is zero as it also has to be 

according to Eq. (78).  For the condition given by Eq. (88), the time-averaged power radiated per solid angle 
,dP m

d
 given by 

Eqs (81) and (84) is zero.  There is no radiation. 
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